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Automated Defect Inspection on Textured Surfaces
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Abstract— Automated defect inspection has long been a chal-
lenging task especially in industrial applications, where collecting
and labeling large amounts of defective samples are usually harsh
and impracticable. In this paper, we propose an approach to
detect and localize defects with only defect-free samples for model
training. This approach is carried out by reconstructing image
patches with convolutional denoising autoencoder networks at
different Gaussian pyramid levels, and synthesizing detection
results from these different resolution channels. Reconstruction
residuals of the training patches are used as the indicator for
direct pixelwise defect prediction, and the reconstruction residual
map generated in each channel is combined to generate the
final inspection result. This novel method has two prominent
characteristics, which benefit the implementation of automatic
defect inspection in practice. First, it is absolutely unsupervised
that no human intervention is needed throughout the inspection
process. Second, multimodal strategy is utilized in this method
to synthesize results from multiple pyramid levels. This strategy
is capable of improving the robustness and accuracy of the
method. To evaluate this approach, experiments on convergence,
noise immunity, and defect inspection accuracy are conducted.
Furthermore, comparative tests with some excellent algorithms
on actual and simulated data sets are performed. Experimental
results demonstrated the effectiveness and superiority of the pro-
posed method on homogeneous and nonregular textured surfaces.

Index Terms— Convolutional denoising autoencoder (CDAE),
defect inspection, texture analysis, unsupervised learning, auto-
matic optical inspection.

I. INTRODUCTION

EXTURED surface inspection aims to identify regions

that exhibit dissimilar properties with defect-free areas
according to certain criteria such as texture patterns or struc-
tures. It commonly occurs in many industrial applications,
such as textile inspection [1], wood inspection [2], and
ceramic tile inspection [3]. Surface defects are generally
inspected by experienced inspectors traditionally. Similar man-
ual approaches are usually time consuming and highly sub-
jective. Therefore, they are still insufficient to meet the needs
of modern industrial production. Automated optical inspection
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uses machine vision techniques for industrial defect inspection
and has drawn much attention in recent years, especially for
textured surface inspection [4]-[6].

Researches on texture characteristics have important the-
oretical and practical value, and various methods of texture
analysis emerge in an endless stream continuously. Commonly
used texture analysis methods can be categorized into four cat-
egories according to the utilized image processing techniques.
These categories are as follows:

1) statistical methods;

2) structural methods;

3) filter-based methods;

4) model-based methods [7].

Statistical methods usually utilize the grayscale distributions
of image regions to describe texture characteristics, e.g.,
the heterogeneity and directionality. They are effective
especially for natural textures, such as ceramic tiles and
woods. Gray-level co-occurrence matrix-based [8] and local
descriptor-based [9] methods are typical statistical texture
analysis means. Structural methods focus on finding texture
primitives of texture images and they are especially suitable for
textures with obvious structural attributes. Characteristics of
texture primitives, such as the density, directionality, or scale
size, directly affect the texture pattern and structural visual
effect. This approach is commonly applied to textures with
repetitive patterns such as fabrics [10] and bricks [11]. By
using texture-primitive features, Sharma et al. [12] proposed
a semisupervised approach for segmentation and classification
of medical images and achieved superior performance. Filter-
based methods aim to describe textures in a transformed
domain using spatial transformations, filters, or filter banks.
They are the most widely used approaches for texture analysis,
description and inspection. In general, these methods can be
divided into spatial domain [13], frequency domain [14], and
spatial-frequency domain [15]. Fourier analysis [14], wavelet
transform [16], and Gabor transform [17] are commonly used
skills in filter-based texture analysis. However, these methods
are usually used together with other approaches to specific
issues [16], [18], [19]. Schneider and Merhof [18] presented an
automatic method for plain and twill fabric detection by com-
bining Fourier analysis, template matching, and fuzzy cluster-
ing. Finally, model-based algorithms describe texture patterns
by modeling special distributions or other attributes with
certain models [20], [21]. Xie and Mirmehdi [20] presented an
approach to detect and localize defects in color textures with
a Gaussian mixed model and it achieved better performance
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when compared with traditional Gabor filter bank-based
method. Gao et al. [21] developed a spatial-frequency
feature extraction algorithm for defect detection using smooth
Itakura—Saito nonnegative matrix factorization. This algorithm
exhibited superior performance. Similar approaches are not
limited to specific models and tend to have higher flexibility.

Although good effects may be achieved with these methods
on the description of texture features and the detection of
texture defects, most of them are application dependent and
are mainly suitable for homogeneous textures. Recently, with
the development of deep learning technology, methods that
use deep neural networks are gradually rising in the industrial
defect inspection field. Ren et al. [22] proposed a supervised
convolutional neural network (CNN) architecture for image
patch classification with transfer learning. Then pixelwise
prediction is conducted with the trained classifier over input
images. This model exhibits good performance for wood
defect inspection. Weimer et al. [23] and Park er al. [24]
also proposed novel deep CNN architectures, which obvi-
ously improve the accuracy of automated defect detection.
Li et al [25] proposed a Fisher criterion-based stacked
denoising autoencoder (AE) model for deformable patterned
fabric defect detection. Discriminative representations can be
achieved by training with defective and defect-less samples.
Though effective, all of these methods share a common issue
that labeled training data are required for model training
even with the fine-tuning strategy [22]. This requirement may
be harsh and even impossible in many industrial occasions
where some defect types are unpredictable and occur only
during production. Furthermore, due to the limited resources
in a factory environment, collecting a wide range of defective
samples is usually difficult. Therefore, the scalability of these
methods may be limited in industrial practice.

To deal with these challenges, in this paper, we propose
a novel approach, which we call multiscale convolutional
denoising AE (MSCDAE), to detect and localize defects with
only defect-free samples for model training. This approach
employs an inverted pyramid architecture that textural image
patches at different resolution scales can be reconstructed
with a convolutional denoising AE (CDAE) network in each
pyramid layer. Reconstruction residuals of patches are served
as the criteria for direct pixelwise prediction. Prediction result
of each pyramid layer is then synthesized to form the final
inspection representation for a candidate sample.

The contributions of this paper include the following.

1) An unsupervised novel defect inspection method which
can be trained with only defect-free samples is proposed.
This method is capable of dealing with defects, which
have not occurred before in production without any
human intervention.

2) This method is implemented in a multimodal
form. (Pyramid layers with various resolutions contain
different textural information and can be viewed as
multiple modalities.) This strategy is able to enhance
robustness and accuracy of the method.

3) Attributes such as the convergence, noise immunity, and
inspection accuracy of the proposed method are analyzed
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Fig. 1. Distributions of defect-free and defective patches in the patch domain
for (a) homogeneous and (b) nonregular textural samples. Defect-free patches
in sample (b) are different but visually consistent.

s=0.5

Fig. 2. Region mura defect in a LCD panel sample at different scales.

in detail in this paper. Extensive comparative tests are
also conducted to evaluate this method quantitatively
and qualitatively, and the inspection performance is
demonstrated to be more robust and accurate.

The rest of this paper is organized as follows. In Section II,
we illustrate the motivation why we use the CDAE network
for defect inspection and review the foundations of CDAE
network briefly. Then, in Section III, we describe the proce-
dures of the proposed MSCDAE model in detail, steps to train
the model and test candidate images are summarized. In order
to analyze the model and compare the overall performance,
experimental results are exhibited in Section IV. Then the
implementation details of the experiments are summerized in
Section V. The applications and limitations of the proposed
model are illustrated in Section VI. Finally, we conclude this
paper in Section VII.

II. MOTIVATION AND FOUNDATIONS

As stated above, the CDAE network and Gaussian pyramid
structure are applied to the proposed MSCDAE model. The
former is used to reconstruct the input image patches and gen-
erate reconstruction residual map for prediction. Respectively,
the latter is utilized to analyze and synthesize the inspection
result at different spatial resolutions. In this section, we will
illustrate the motivation of using these two strategies first.
Then the development of convolutional AE (CAE) and CDAE
networks are briefly reviewed.
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Overall architecture of the proposed MSCDAE model in the training and testing phases. The CDAE module in each layer is optimized separately,

and the reconstruction residual maps are resized to the size of the original image and integrated to form the final result.

A. Motivation Illustration

1) Why CDAE: The CAE network is commonly used for
unsupervised learning of efficient codings [26]. The aim of
this module is to learn a representation for a set of data and
discover their common ingredients. For homogeneous textures
in industrial, e.g., the LCD panel in Fig. 1(a), image patches,
which do not contain defective areas, are highly similar in
general. Therefore, it can be quite suitable to model the distri-
bution of these defect-free image patches in the patch domain
by training a CAE network to reconstruct the inputs. After
training, filters in the CAE model will be sensitive to similar
patches and show high responses to them. While for patches,
which contain defective areas, the appearance and distribution
in the patch domain are usually quite different. Therefore,
the learned model may be less sensitive to them, and relatively
low responses will be generated. By measuring residuals
between the responses and the raw inputs, the direct pixelwise
prediction can be easily conducted. For nonregular textures in
industry, e.g., the ceramic tiles in Fig. 1(b), the situation is
slightly different that there are some differences between the
defect-free patches themselves. This phenomenon may affect
the convergence of the model training to a certain extent.
However, thanks to the fact that although the patterns of these
ceramic tile samples appear different, the visual impression of
the same product line remains consistent. Therefore, the CAE
model is still capable of modeling them, and this conclusion
has been verified in latter experiments. The CDAE model tends
to be more robust than CAE by introducing noise for model
training especially for defect inspection. This statement will
also be verified.

2) Why Pyramid: Different information may exhibit for
an image at different scales. As shown in Fig. 2, a region
mura defect is presented. This defect becomes more and more
conspicuous when the resolution scale changes from 4 to 1 and
nearly disappears when the resolution scale changes to 0.5.
The repetitive horizontal and vertical stripes also appear in
different forms with the changes of spatial resolution. This

phenomenon is in accordance with that in [20] and [27].
And it shows that processing in multiscale with pyramid
may ensure the capture of sufficient textural properties, which
are often data dependent. With multiscale texture analysis,
characterizing a pixel based on local neighborhood pixels
in various resolutions tends to be more robust. Therefore,
the pixelwise prediction result can be more accurate.

B. Foundations and Developments

An AE model is based on an encoder-decoder paradigm,
which is usually trained in an unsupervised fashion and allows
hierarchical feature extraction from unlabeled samples. CAEs
differ from conventional AEs as they retain the structure
information of 2-D images and their weights are shared among
local locations. The architecture of a typical CAE contains an
encoder part with convolutional and pooling layers, and an
analogous decoder part with deconvolutional and upsampling
layers. The encoder and decoder parts can be defined as
transitions ¢ and w, such that

o X—>F
v F—- X
¢,y = argminx —y (¢ X)) (1)

where x € RY = X refers to an image patch in the X' domain,
z = ¢(x) € R? = F refers to the corresponding hidden layer
map in the F domain. Assume x' denotes the reconstruction,
the encoder and decoder processes can be expanded as

z=0 (Wox+b)

X =0 Woz+b) 2)
where “o0” is the convolution process; W and W’ are the weight
matrices; b and b’ are the bias vectors for the encoder and

decoder, respectively; and o and ¢’ are the nonlinear mapping
processes, specifically, the convolutional, pooling, deconvo-
lutional, and upsampling processes. Particularly, the pooling
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and upsampling processes are usually conducted in the form
of max pooling and max unpooling [28]. The CAE model can
be trained to minimize the reconstruction errors (such as mean
squared errors)

> lwlr G

L
L(x,X) = N Z Hxl —X;H2 + A
i=1 we(W,W'}
where N is the number of samples, A is a constant that
balances the relative contributions of the reconstruction and the
regularization terms, and (||x; — x; 2)1/2 is the reconstruction
residual of the ith image patch.

The CDAE network is slightly different from CAE that it
takes partially corrupted inputs for model training and aims to
recover the original undistorted inputs. This is done by first
corrupting the initial input x into X by means of a stochastic
mapping X ~ ¢(X|x) [29]. In latter experiments, the salt and
pepper noise is utilized for the corruption process. Assume X’
is the reconstruction of the corrupted data X, loss of the CDAE
model is measured as £(x, X'). The concrete form of £(x, X)
is similar to that of £(x, x") in (3). Stochastic gradient descent
algorithm [30] can be easily applied for optimization of CAE
and CDAE models.

IIT. PROPOSED METHODS

In this section, procedures of the proposed MSCDAE model
are discussed in detail. As shown in Fig. 3, the overall
architecture of this model in the training and testing phases
is exhibited. Procedures in the training phase mainly aim to
learn the CDAE network at each pyramid level and calculate
the optimal threshold for defect segmentation, yet those in the
testing phase illustrate the processes to inspect a candidate
defective image. Specific illustrations are as follows.

A. MSCDAE Model Training

Training phase of the MSCDAE model mainly includes
the image preprocessing, patch extraction, model training, and
threshold determination procedures.

1) Image Preprocessing: All image preparations prior to
the training procedure are included in this part. They are the
illumination normalization, Gaussian pyramid downsampling,
and noise corruption steps.

a) Illumination normalization: Most of the existing meth-
ods are highly sensitive to illumination variations during the
defect inspection process. In order to reduce the rate of
false detection, an illumination normalization process based
on Weber’s law [31] is conducted first of all. According to
this law, stimuli are perceived not in absolute terms, but in
relative terms: their fold changes in magnitude relative to
the background level of stimulus. Assume I is an image to
be inspected, the illumination normalization process can be
implemented as

I' = WLD(I) (4)
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where WLD(.) refers to a Weber local descriptor [32], which
can be expressed as

WLD([I) = arctan Z Z

AxeA AyeA

I(x,y)=I(x—2x,y=Ay)
I(x,y)

(5)

where A = {—1,0,1}, {(x— A x,y— A y)| A x € A, A
y € A} refers to the eight-neighborhood region of point
(x,y). As shown in Fig. 4, the performance of this step
with two fabric textural samples is exhibited. It can be seen
that the uneven illumination conditions can be well alleviated
with this illumination normalization process. (Please note that
this process is redundant on occasion where the changes in
brightness are supposed to be defective.)

b) Gaussian pyramid downsampling: In a Gaussian pyra-
mid subsequent images are weighted using a Gaussian blur and
scaled down by resampling, as shown in Fig. 3. Each pixel in
a pyramid level contains a local average that corresponds to a
pixel neighborhood in a lower level of the pyramid. That is,

17 =stgU™y,n=1,2,---n;; IV=1 (6

where SV refers to the downsampling process, G(-) denotes
the Gaussian convolution [33], n; is the number of pyramid
levels, and I’ is the image after illumination normalization.

c) Noise corruption: As stated, the salt and pepper
noise [34] is utilized for data corruption in the MSCDAE
model. Let T ) denote the corrupted image at level n, g; ;
and g; ; refer to the gray levels of pixels at position (i, j) in
the corrupted and original clean images. The corrupted data is
given by

. gi,j» Wwith probability (1 — p)
8ij = . » (N
s, with probabilityp
where
0, with probability 0.5 ®)
S =
255, with probability 0.5.

The probability p directly affects the degree of data contam-
ination, and its impact to the model will be verified in latter
experiments.

2) Patch Extraction: After image preprocessing, patches
will be collected to train the CDAE network at each pyramid
layer. For pixelwise prediction, characterizing a pixel based
on local neighborhood information can be more robust than
using only a single pixel. Nevertheless, the size of local
neighborhoods is usually data dependent. Thanks to the mul-
tiscale pyramid structure, fixed size patch extraction can be
conducted in multiscale levels instead of generating patches
with various sizes, which are computationally expensive [20].
Suppose the patch size is w x h and the stride interval
is s, dimension of the patch set generated from an image
with size W x H can be expressed as [N, N, w, h], where
Np=T[(W—-w)/s +111 x [ [(H —h)/s + 1]] refers to the
number of patch samples, N. € {1, 3} refers to the number
of image channels. It should be noted that only defect-free
images are utilized for model training and the patch set at
each pyramid layer should not be confused with each other.
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(c) (d)

Fig. 4. Illustration of two fabric texture samples with (a) central spot
and (b) side illuminations. Changes in (c¢) illumination before and (d) after
the illumination normalization procedure. It can be seen that the interference
of uneven illuminations can be weakened with the illumination normalization
procedure (best viewed in color).

3) Model Training: As stated in Section II-A, the CDAE
network tends to have good reconstruction ability for indus-
trial defect-free textural image patches after model training.
Therefore, it is natural to use the reconstruction residual as
the criterion for pixelwise prediction. Training of the proposed
MSCDAE approach aims to model the distribution of defect-
free image patches by minimizing the total reconstruction
loss of all patches in each image pyramid layer. In this
paper, the optimization process is conducted by applying
batch gradient descent algorithm in an error back propagation
fashion. We illustrate the procedures of one epoch iteration
with m batches as follows:

Algorithm 1

Step 1: ¥ 1, set AWD =0, AbY = 0;
Step 2: fori =1 to m,
a. Calculate the partial derivatives VW(/)E(X, x’) and
V0 £ (X, X’) ;
b. Partial differential superposition:
MWD = AawD 4 Ywo L (X, X/) ,
ABD = ApD + V0 £ (X, x/) ;
Step 3: Update weight parameters:
a. Renew WO =w® _ 4. AW(I), »O —=p® —
a - Ab(l);
b. Disrupt the order of patches in the data set and
finish the current epoch iteration.

where [ denotes the /th layer of the deep networks, and a is
the learning rate, which will be discussed in latter experiments.
Procedures to optimize the parameters W’ and &' are similar
and will not specified here repetitively.

4) Threshold Determination: Threshold is a critical parame-
ter to distinguish the defective and defect-free points. Assum
EO = WDx)k=1,2,--, N} refers to the reconstruction
residual set of patches in the ith image pyramid layer, N, is
the number of total training patches, x is the kth image patch,
9D (x¢) = (Ixc —x,[?)!/? is the reconstruction residual
between x; and x;. It can be seen from Fig. 5 that 9O
of the majority of defect-free pixels are mainly concentrated

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 67, NO. 6, JUNE 2018
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Fig. 5. Illustration of the influence of threshold for defect segmentation. First
column: original textural samples. Second column: reconstruction residual
maps in the first pyramid layer. Third column: histogram of pixels in the resid-
ual maps, the vertical "blue" lines refer to the segmentation thresholds (best
viewed in color). (a) Defective LCD sample and (b) Defective textile sample.

near the mean value and their distribution is close to the
Gauss distribution. Therefore, the segmentation threshold can
be defined as T = w4y .o ® [20], where uD, 6@ are
the mean and standard deviation of set ¢). The parameter
y can be adjusted according to the segmentation sensitivity.
In latter experiments, we set y = 2 according to experimental
verification, and the effect of this parameter is also discussed.
Note that, the thresholds are determined by using the training
patches which are all defect free. As shown in Fig. 5, two
samples that are segmented by the thresholds (the vertical line
with “blue” color) in the first pyramid layer are exhibited.
The “green” regions, which are labeled "FN," mean the false
negative points (points which are defective but judged to be
defect free), and the “blue” regions, which are labeled “FP,”
mean the false positive points (points which are defect free but
judged to be defective). Threshold determination is to find the
optimal threshold value, which achieves the tradeoff between
reducing the FN and FP indicators simultaneously. Detailed
procedures to select the optimal threshold will be discussed in
latter experiments.

After model training, novelty detection and defect localiza-
tion processes can be easily conducted for a candidate textural
image. Detailed procedures are presented as follows.

B. MSCDAE Model Testing

Testing phase of the MSCDAE model is exhibited in Fig. 3.
It mainly includes the image preprocessing, patch extraction,
residual map construction, defect segmentation, and synthe-
sization procedures.

1) Image Preprocessing: Steps of image preprocessing in
the testing phase are slightly different from those in the
training phase that the noise corruption step is not necessary
for inspecting a candidate image [35]. As for the illumination
normalization and Gaussian pyramid downsampling steps,
the implementations are the same.

2) Patch Extraction: After preprocessing, patches will be
extracted for textural images to be inspected. In the testing
phase, this process should be conducted row by row or column
by column strictly so as to generate the residual map conve-
niently [36] (in the training phase, patches can be extracted
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randomly). The extraction strategy and parameters (w, k, and
s) applied are the same as that in the training phase.

3) Residual Map Construction: As is shown in Fig. 3, for
prediction of a pixel, a local receptive field x with size w x h
in its neighborhood will be extracted and flows forward in the
trained model. The reconstruction residual ¥ (x) serves as the
criterion and represents the extent to which the point belongs
a defective area. Therefore, in each image pyramid layer,
a residual map can be constructed for subsequent processing.

4) Defect Segmentation: This procedure is conducted upon
the residual map in each image pyramid layer as follows:

0 if 9O (x;4) <T®
1 otherwise

¢ V(xjp) = )
where ) (x; x) refers to the reconstruction residual at posi-
tion (j, k) in the ith layer, g(")(xj,k) is the corresponding
label after segmentation. Note that the defective points are
labeled “1.”

5) Result Synthesization: This procedure is conducted
mainly to improve the robustness and accuracy of the defect
inspection task. Here, we follow the strategy in [1] and [37],
which combine information from multiple pyramid levels.
It assumes that a defect must appear in at least two adjacent
levels. Therefore, a logical AND operation can be imple-
mented in every pair of adjacent levels to reduce false alarms.
The operation is expressed as

s(i,i+1)(x) — g(i)(x)g(i+1)(x). (10)

Note that each residual map is scaled up to be the same size
as the original input images, “&” refers to the AND operation
between pixels at the same position in the two adjacent maps.
Next, the resulting maps are associated with a logical OR
operation to generate the final result. That is,

s® =" | ¢*Vw- | ")

|39

(1)

where “|” refers to the OR operation between pixels at the
same position, and g(x) is considered the final consolidated
map. Note that a morphology open operation can be carried
out to remove some noise interferences if necessary.

IV. EXPERIMENTS AND DISCUSSION

To evaluate performance of the proposed MSCDAE model,
in this section, several sets of experiments are presented.
Specifically, convergence performance of the proposed MSC-
DAE model is evaluated first. This is very important to verify
the efficiency of the MSCDAE model in practical use. Second,
robustness of the model against noise in the CDAE networks
is discussed. The amount of noise injection is especially
important to make the trained model more stable and avoid
overfitting [35]. Third, inspection performance of the model
against the segmentation threshold is verified. Threshold is a
very sensitive parameter which directly affects the inspection
effects. Fourth, inspection performance of each pyramid level
in the MSCDAE model is illustrated. The comprehensive result
which serves as the ultimate inspection output is compared
with results when using only single resolution level. Finally,
overall inspection performance of the MSCDAE model is
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Fig. 6. Convergence tests of the proposed MSCDAE model on (a) homoge-
neous and (b) nonregular textures. The CDAE model in each pyramid layer
is trained with only four defect-free samples (best viewed in color).

compared with several superior methods qualitatively and
quantitatively. Corresponding analyses and discussions are
made in detail. Before the introductions of these experiments,
the data sets and parameters used in this paper are illustrated
as follows.

A. Data Sets and Parameters

In our experiments, textural samples which are homoge-
neous and nonregular are both utilized. In these data, the used
fabric samples mainly come from the Fabrics [38] and the
KTH-TIPS2 [39] data sets. The former consists of about
2000 samples of garments and fabrics, and some of them are
captured under different illumination conditions. Respectively,
the latter contains 4752 images of 11 materials, each of them
is captured under varying poses, illuminations, and scales.
The used LCD samples come from [36]. There are various
categories of defects in this data set with different sizes and
spatial scales. Other samples come from [40]. This data set is
artificially generated, but similar to real world problems and
has been widely used for defect inspection verification. Note
that all the used images are in PNG format, and each color
channel is 8 b.

Parameter tuning can directly affect the effect of an algo-
rithm. In the proposed MSCDAE model, parameters, which
have significant influences, mainly include the patch size w x h
in the patch extraction step, the noise proportion p in the noise
corruption step, the segmentation control parameter y in the
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Fig. 7. Inspection performance (detection rate and false alarm) against

different proportions of noise for model training.

threshold determination step, the tradeoff constant A in loss
function in (3), and the learning rate o in the model training
step. The latter two are called “hyper parameters,” in which
the 1 can be determined by cross validation [41], A = 0.001 is
used in latter experiments after verification. As for the learning
rate a, a heuristic principle is applied by choosing a value close
to the largest learning rate that does not cause divergence [42].
In latter experiments, we start with o = 0.1, and if the loss
increases, this parameter will decrease automatically until no
divergence is observed. As for the other three parameters,
corresponding experiments will be conducted to verify their
impacts, and motivations to determine their values are also
discussed.

B. Convergence Evaluation

As stated before, obtaining a large number of defect samples
and labeling their ground-truth regions are not feasible in
many industrial applications. Therefore, whether the MSC-
DAE model can be applied in practice with only unlabeled
samples for model training needs to be validated.

As shown in Fig. 6, relationships between the iteration num-
ber and mean reconstruction loss of MSCDAE are presented.
In the two tests, the CDAE networks in each pyramid layer
of MSCDAE are trained on the LCD panel samples (homo-
geneous texture) and ceramic tile samples (nonregular tex-
ture) separately. In each application, four defect-free textural
images of 512 x 512 pixels are utilized and the patch size
is 8 x 8. (Please note that the changes in patch size do
not significantly affect the inspection performance because
of the pyramid architecture [20]; therefore, this parameter
is fixed throughout our experiments.) It can be seen from
Fig. 6 that the proposed MSCDAE method is capable of going
toward stability in very few iterations no matter it is trained
on homogeneous textures or nonregular textures. In addition,
it should be noted that the training procedure of this model is
usually done offline, so it has no impact on the online defect
inspection efficiency.

C. Robustness Against the Noise Fraction

As stated in Section III-Al, the salt and pepper noise is
added into input data during training in terms of improving
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Fig. 8. Overall inspection accuracy against different proportions of noise for
model training.

robustness of the trained MSCDAE model. (Please note that
the random noise injection process is conducted only in the
training phase. It should not be used in the testing phase
so as to ensure fairness of performance comparison [35].)
Here, we attempt to evaluate how the proportion of noise,
which is called noise fraction (NF), will affects the inspection
performance. In this test, 200 defective and 200 defect-free
LCD panel samples of 512 x 512 pixels are utilized, and three
indicators related to accuracy of the inspection are applied to
verify the performance via varying NF. The indicators are

Detection Rate (DR): TP / (TP + EN)

False Alarm (FA): FP / (TN + FP)

Total Accu (TA): (TP + TN) / (TP + FN + TN + FP)
(12)

where TN refers to the defect-free samples which are identified
defect free, FP is those which are identified defective; TP
refers to the defective samples which are identified defective,
FN is those which are identified defect free, respectively. With
these definitions, it can be seen that DR is the ratio of correctly
identified defective samples, FA is the ratio of defect-free
samples, which are falsely identified defective, and TA is the
ratio of all correctly identified samples. Generally, DR and
FA need to be used together, and the goal of choosing the
optimal NF is to increase DR, meanwhile depressing FA. Fig. 7
shows the inspection DR and FA with different NF values.
It can be seen that when the NF indicator varies in range {0%,
10%, 20%, 40%, 60%}, the DR rises first, then falls rapidly,
while the FA shows an opposite trend. When NF = 10%,
the inspection performance is the best. Furthermore, we exhibit
the overall inspection accuracy in Fig. 8. It is clear to us that
the inspection results show a parabolic trend, rising first and
then falling rapidly. When NF varies from 10% to 60%, TA
drops from 95.25% to 71.5%, with a drop rate of 33.2%. This
is mainly due to the fact that with heavily corrupted data,
the CDAE model fails to learn meaningful feature representa-
tions, and thus unable to distinguish defective and defect-free
patches. In latter experiments, NF = 10% is utilized in the
proposed MSCDAE model.
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Fig. 9. Inspection performance of the MSCDAE model against the seg-
mentation threshold. First row: original synthetic collage samples. Second
row: reconstruction residual maps. Third, fourth, and fifth rows: segmentation
results when y = 1,2, and 3 (best viewed in color).

D. Robustness Against the Segmentation Threshold

As stated, threshold is a very critical parameter, which
directly affects the defect inspection performance. In the
proposed MSCDAE model, segmentation threshold in the ith
pyramid layer is defined as 7® = 4 4+ 5 . 6@ where
y is the parameter, which can be adjusted according to the
segmentation sensitivity. In this part, we attempt to evaluate
how the parameter y will affect the inspection performance.
As shown in the first row of Fig. 9, some synthetic collages
generated from textural samples are exhibited. In each case,
the background is the learned texture for model training (four
512 x 512 samples are used for training), and the fore-
ground (circular region) is treated as the novelty to be detected.
Note that areas of the background and the foreground are the
same, and textures selected for these two parts are particularly
similar so as to increase the difficulty for segmentation. Effect
of the parameter y is verified by separating foregrounds
from these collages. As shown in the second row of Fig. 9,
the reconstruction residual maps in the first pyramid layer
are exhibited. Corresponding segmentation results when y =
1,2, 3 are also presented in the third, fourth, and fifth rows.
It can be seen that there are many falsely detected regions
when y = 1, and with y increases, the defect-free areas, which
are falsely identified defective will gradually decrease, and this
is the same as the correctly identified defective areas.

In order to further quantify the effect of the parameter y,
as shown in Fig. 10, we plot the ROC curves by varying
y value with respect to these collage samples. The true
positive rate (TPR) and false positive rate (FPR) are slightly
different from the definitions in Section IV-C. The former
refers to the proportion of the correctly segmented defective
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Fig. 11.  Localizing texture defects with the proposed MSCDAE model
on marble samples (first row), LCD panel samples (second row), and fabric
samples (third row). Left to right are original defect images, residual maps
from the first, second, third pyramid layers, and the final comprehensive
results (best viewed in color).

Input Image

area in the foreground, while the latter refers to that of
the falsely segmented defective area in the background. In
Fig. 10, the “®,” “¥%,” and “X” in each curve correspond
to the result when y is set as 3, 2, 1. It can be seen from
the trends that with y increases, both the TPR and FPR
will decrease. Furthermore, according to the attribute of the
ROC curve, the closer the curve is to the top-left corner,
the more accurate the segmentation result will be [the top-
left corner (0, 1) represents that both the background and
foreground are correctly segmented absolutely]. That is to
say, the goal of choosing the optimal threshold value is
reducing the false negative rate (FNR) and FPR indicators
simultaneously. Therefore, we can take the false detection
rate (FDR) as an indicator to discover the optimal threshold
value, FDR = FNR + FPR = (1 — TPR) + FPR. As can be
seen in Table I, the indicator FDR have the minimum average
value when y = 2. That is to say, when y = 2, the average
defect inspection performance is the best. For verifications of
the threshold parameters in other pyramid layers, the methods
are similar. In latter experiments, y = 2 will be utilized for
defect segmentation.
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Fig. 12.  Segmentation results of various textural samples with different methods. Top to bottom are the original defect samples, ground-truth regions, results
obtained by the DCT, LCA, PHOT methods, and the proposed MSCDAE model.

TABLE I
AVERAGE FDR WITH DIFFERENT THRESHOLD PARAMETERS y

Threshold value -1 —9 —3
Average FDR 7= 7= 7=
FDR = (1 - TPR) + FPR 0332 | 0282 | 0321

E. Defect Inspection Evaluation

As stated before, the Gaussian pyramid architecture is
utilized in the proposed MSCDAE model. And the final
inspection result of this model is the synthesis of result from
each pyramid layer. However, whether this fusion mechanism
is beneficial to the overall inspection performance still needs to
be validated. As shown in Fig. 11, the inspection results of sev-
eral textural samples (column 1) with the proposed MSCDAE
method are exhibited. The reconstruction residual heat maps at
pyramid level [, [ = 1, 2, 3, are also visualized (columns 2—-4).
It can be seen that the inspection results are very sensitive to
pyramid resolutions.

As detailed textural information may be concealed or mani-
fested in different resolutions, the CDAE networks in different
levels of MSCDAE will present different activation responses

even to the same object. It should be noted that in order to
generate the final inspection results (column 5), residual map
in each scale is interpolated to the same size as the original
image. By contrastive analysis of the final results and results
from independent pyramid levels, conclusion can be drawn that
the used fusion mechanism is capable of enhancing robustness
and eliminating false alarms, e.g., in level 3 of sample 1,
no defects are detected with the model, but the final result
is accurate; in level 1 of sample 2, many defective regions
are falsely detected, but the final result is also satisfactory.
Therefore, the proposed MSCDAE model tends to be more
robust and accurate for defect inspection than models with a
single resolution scale.

F. Overall Performance Comparison

In order to verify the effect of the proposed MSCDAE
model more fully, in this section, we compared the inspection
performance of this model with several superior unsupervised
algorithms, e.g., the discrete cosine transform (DCT) [43],
low-pass filtering with curvature analysis (LCA) [44], and
phase only transform (PHOT) [45] methods. Defective regions
inspected with these methods upon various textural samples
are exhibited in Fig. 12. As can be seen that the DCT
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TABLE 1I
QUANTITATIVE SEGMENTATION RESULTS OF VARIOUS TEXTURAL SAMPLES WITH DIFFERENT METHODS

Criteria Recall Precision F1-Measure
m DCT | LCA | PHOT | Ours DCT LCA | PHOT | Ours DCT LCA | PHOT | Ours
(a) 0.7179 0.4511 0.1411 0.7215 0.3997 1.0 0.0179 0.6193 0.5153 0.6218 0.0318 0.6665
(b) 0.1841 0.0921 0.0419 0.4111 0.0536 0.0071 0.3459 0.5467 0.0830 0.0132 0.0748 0.4693
(c) 0.2730 0.4775 0.1328 0.2034 0.0408 0.0238 0.1127 0.1426 0.0710 0.0453 0.1219 0.1677
(d) 0.3188 0.5493 0.0742 0.8765 0.9676 1.0 0.1631 0.9231 0.4796 0.7091 0.1020 0.8992
(e) 0.4412 0.5610 0.6099 0.3578 0.4701 0.6385 0.2989 0.6418 0.4552 0.5972 0.4012 0.4595
) 0.5556 0.6120 0.3180 0.6322 0.5070 0.4123 0.3673 0.6962 0.5302 0.4927 0.3409 0.6627
(2) 0.5294 0.6216 0.1720 0.7381 1.0 0.8290 0.5350 0.6866 0.6923 0.7105 0.2603 0.7114
(h) 0.5493 0.5070 0.4366 0.9718 1.0 0.2769 0.9394 0.5656 0.7091 0.3582 0.5962 0.7150
1) 0.8157 0.6413 0.4140 0.8808 0.3910 0.8985 0.0060 0.9204 0.5287 0.7484 0.0119 0.9002

method (the third row) shows good performance mainly in
obvious periodic textures, e.g., samples in Fig. 12(d) and (g).
It performs poorly in nonregular textures, e.g., samples
in Fig. 12(b), (c), and (e), and it is easy to introduce falsely
detected regions. This phenomenon is primarily due to the
fact that the spectrums of defective and defect-free regions in
nonregular textures are easily confused in DCT. For the LCA
method (the fourth row), the periodic textures are removed
before inspection by retaining the low-frequency parts and
eliminating the high-frequency parts. Similar methods are
likely to be affected by illumination [sample in Fig. 12(b)] and
perform general to defects with relatively large sizes [sample
in Fig. 12(e)]. As for the PHOT method (the fifth row),
defects, such as samples in Fig. 12(d) and (g), are easy to
be omitted because of the phase only transform strategy. In
contrast to these phenomena, the proposed MSCDAE method
provides a novel way to distinguish defective and defect-free
regions by directly learning from several defect-free samples.
It exhibits relatively good performance on both homogenous
and nonregular textures.

Furthermore, three quantitative indicators are utilized to
analyze the inspection results quantitatively. The indicators
utilized are defined as

TP
Recall = — (13)
GT
. TP
Precision = ——— (14)
TP + FP
2 - Precision - Recall
F1-Measure = (15)

Precision + Recall

where TP and FP denote the number of true positive and false
positive pixels, GT denotes the total number of ground-truth
pixels for the given images. The F1-Measure indicator is a
comprehensive evaluator upon both recall and precision. The
quantitative segmentation results of textural samples in Fig. 12
with the DCT, LCA, PHOT, and our method are exhibited
in Table II. The bold data indicates better results. It can be
seen that the proposed MSCDAE model has better compati-
bility with both the Recall and Precision indicators, and this
conclusion can also be drawn from the F1-Measure results in
the fourth column. From these data, we can find that the pro-
posed MSCDAE model has better comprehensive inspection

performance to all these textural samples, no matter they are
homogeneous or nonregular. However, the other three methods
may fail in some cases, e.g., the DCT algorithm shows poor
precision performance to the samples in Fig. 12(b) and (¢), it is
mainly because the textures are nonregular and the defects
are too small that many interferences are introduced in the
segmentation results; the LCA algorithm is invalid to the
samples in Fig. 12(b), (c), and (h), the reason is also related to
the spatial scales of the defects in these samples that spectra
of small defects are easily omitted in the frequency filtering
operation. As for the PHOT algorithm, it fails in the samples
in Fig. 12(a), (b), (d), and (i). The phenomenon is mainly
related to the nature of the algorithm itself. This experiment
further confirms the superiority and stability of the proposed
MSCDAE method.

V. IMPLEMENTATION DETAILS

The proposed MSCDAE model is implemented on a desktop
computer with eight cores, 32 GB memory, and GTX 980Ti
Nvidia GPU. The training process of this model is time-
consuming. With four 512 x 512 training samples, the training
time can reach 742 s. But fortunately, this process is usually
conducted offline and will not affect the online inspection.
Computational complexity of the MSCDAE model in the
online inspection phase mainly concentrates on the steps
to gain and to reconstruct the patch set. This two steps
in MSCDAE are the most time-consuming and nested-loop
procedures, which are directly affected by the sizes of input
images and network architectures of the model [46]. But
the practical computational workload is more inclined to the
hardware accelerators [46]. According to our experiments, for
a candidate image with 512x512 pixels, the average inspection
time with the proposed model (patch size: 8 x 8) is 674 ms
and is able to meet the real-time inspection demands.

The proposed model is implemented using Python. The
packages involved in the implementation mainly include
Keras [47], Theano [48], Scikit-Learn [49], Numpy [50], and
Scipy [51].

VI. APPLICATIONS AND LIMITATIONS

The proposed MSCDAE approach is a novel unsupervised-
learning-based defect inspection method and it exhibits good



1276

TABLE III
ABBREVIATIONS UTILIZED IN THIS PAPER

AE Auto-Encoder
AOI Automated Optical Inspection

CAE Convolutional Auto-Encoder
CDAE Convolutional Denoising Auto-Encoder
CNN Convolutional Neural Network
CPU Central Processing Unit
DCT Discrete Cosine Transform
DR Detaction Rate
FA False Alarm
FDR False Detection Rate
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
GPU Graphics Processing Unit

GT Total Number of the Ground-Truth Pixels

LCA Low-Pass Filtering with Curvature Analysis
LCD Liquid Crystal Display
MSCDAE Multi-Scale Convolutional Denoising Auto-Encoder

NF Noise Fraction

PHOT Phase Only Transform
TA Total Accuracy
TN True Negative
TP True Positive

TPR True Positive Rate

performance on homogeneous and nonregular textured sur-
faces. In this paper, experimental results have demonstrated the
effectiveness and superiority of this algorithm in LCD panels,
ceramic tiles, and textiles. However, they are not limited. In
the future, we will verify this algorithm in more application
scenarios, such as the defect inspection of wood, thin film,
solar wafers, and so on.

In addition, although defect inspection efficiency of the
MSCDAE model meets the needs of actual production, it can
still be accelerated with more efficient data-exchanging mech-
anism between GPU and CPU. In the future, strategies will be
adopted to further improve this approach.

VII. CONCLUSION

We proposed a novel method MSCDAE for unsupervised-
learning-based defect inspection. This method constructs a
Gaussian pyramid-based CDAE architecture to distinguish
defective and defect-free regions. The obtained reconstruction
residual map in each pyramid level is synthesized to form
the final inspection evaluation. Analysis and experiments con-
firmed that by making full use of the unsupervised learning
and multimodal result-fusion strategies, the defect inspection
performance can be more accurate and robust. In the future,
we will verify this model in more applications and further
improve it.

APPENDIX

Abbreviations utilized in this paper are listed in Table III
as follows.
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